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LIQUID CRYSTALS, 1989, VOL. 4, No. 3, 325-340 

Torsional defects, dielectric response and dynamics of comb polymer 
liquid crystals 

by M. WARNER and H. LIUt 
Theory of Condensed Matter Group, Cavendish Laboratory, Madingley Road 

Cambridge CB3 OHE 

(Received 16 August 1988; accepted 13 October 1988) 

Nematically and smectically ordered teeth of comb polymers are known to be 
coupled to the backbone. We speculate that if suitable chemistry can make this 
coupling torsional as well, then dipolar correlations can be induced in addition to 
quadrupolar order. We then predict an activated dielectric response mirroring the 
creation of torsional defects in the tooth order. The susceptibility becomes large, 
eventually proportional to the degree of polymerization, N p .  A model for the 
diffusional dynamics of these defects can be calculated exactly and gives an 
exponential variation of the dielectric relaxation time. At low temperatures this 
relaxation time ultimately varies as N,’ . Analogous conclusions are drawn about 
possible non-linear optical effects in comb polymer liquid crystals. 

1. Introduction 
Nematogenic rods, connected together as the teeth of a polymer comb, form nematic 

phases in competition with whatever nematic character the polymer backbone itself 
might have. Neutron scattering experiments and investigations of nematic networks 
demonstrate conclusively that there is strong coupling between the teeth and back- 
bone of the comb. We shall be concerned with defects in the ordering of teeth along 
the backbone when the polymer is in nematic phases or in a particular smectic phase. 
To fix our ideas, we envisage one of the nematic possibilities, termed N, by Wang and 
Warner [l]. The teeth have a positive nematic order and the backbone, of much 
weaker nematic strength and attached to the teeth by hinges with a perpendicular 
tendency, has a negative nematic order. This phase was first investigated by Kirste and 
Ohm [2] and by Keller et al. [3] who found the backbone confined toward the plane 
normal to the director. The corresponding smectic ordering of the teeth confines 
the backbone more strongly [4], eventually leading to hops between planes being 
predicted [5]. An activated form for chain dimensions, characteristic of these defects 
in molecular order, has now been observed [6].  We sketch the nematic phase N, and 
a smectic phase of combs in figure 1. Studies hitherto have been concerned with the 
nematic order, with teeth and the chain backbone configurations and with the 
connection between these properties. This connection is the additional subtlety of 
polymer liquid crystals since mesogenic order restricts the drive to maximal entropy 
usual for polymers. The sketch (see figure 1) of the phases shows the teeth ordered 
nematically and, consistent with this quadrupolar type of ordering, no regard being 
paid to up or down (dipolar order). This disorder represents a torsional entropy 

?Permanent address: Department of Physics, Nanjing Teacher’s University, Nanjing, China. 
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326 M. Warner and H. Liu 

Figure 1 .  (a) N, phase with the main chain forced to explore directions in or close to the plane 
perpendicular to the ordering director. Torsional energy is sufficiently low that dipolar 
correlations between teeth are short ranged. (h) Smectic combs with smectic planes 
dotted in. The chain is strongly confined but the teeth have no dipolar correlations. 

along the backbone and that, for molecules with a suitable chemical structure, we 
propose this entropy can be frozen out at lower temperatures. In backbone polymers, 
de Gennes [7] proposed hairpins as the molecular defect recovering entropy in the 
main chain nematic case. They have been discussed in the context of entropy and the 
current context of dielectric response [8]. Layer hops [5 ]  in a smectic phase are also 
an attempt to recover some of the entropy lost in confinement in planes. We shall 
argue that although there is no consequence for the spatial configurations of the 
polymer from torsional defects, as there is for hairpins and layer hops, there could be 
an extreme consequence for the low frequency dielectric response as a dipolar corre- 
lation within one chain can result, interrupted only by the torsional equivalent of 
hairpins or layer hops, an abrupt change from an up to down arrangement of teeth. 
Figure 2 (0) sketches the idea of teeth with an isotactic attachment to the backbone. 
Their lowest energy state has all teeth on one side of the main chain, that is where the 
main chain is not twisted. This state can be interrupted by defects in the teeth 
orientation. One such defect involving the relative twist of two successive teeth, 
discussed later, is shown in figure 2(b). When the tooth dipole has a component 
always pointing either toward or away from the backbone, then such defects represent 
large changes of energy of the polymer with respect to an external electric field, E. 
Thus, in addition, to the quadrupolar (nematic) order, rotation defines a dipolar sense 
to the problem, sketched later in figure 4. 

Our plan is to describe the conditions for such defects, calculate their energy 
and hence probability of occurrence, find the static dielectric response and the 
non-linear optical response, both of which turn out to be extremely large (eventually 
going as the degree of polymerization), and to introduce a model of diffusion 
of defects for the dynamics of such combs. The dynamics will allow us to find 
the low frequency dielectric response. Mapping onto the dynamics of a one dimen- 
sional Ising model allows an exact solution to the time evolution. We conclude with 
a discussion of what aspects of the dielectric and optical response experiments this 
corresponds to. 

Our principal results are (i) a large dielectric susceptibility x,  ultimately scaling like 
the degree of polymerization Np, and displaying an activated form betraying the 
mechanism via torsional defects and (ii) long relaxation times for dielectric response 
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Torsional defects and comb polymer liquid crystals 327 

Figure 2. (a) Isotactic nematic comb polymers without defects, i.e. all teeth are on one side. 
(b)  The torsionally defected configuration of isotactic combs, (c) An isotactic comb 
molecule with a backbone consisting of C-C linkages in the form [-(CX, Yl)-(CX2 Y2)- 
. . . -(CX, Ya)-].  One repeat with n units is shown; the substituent Y2 is the tooth. 

characteristic of diffusion of defects along the chain in three regions. Relaxation times 
scale ultimately like N i  . Related results apply for the non-linear optical response. 

2 Candidate molecules 
The attachment of teeth has a flexibility that depends on the length of the hinge 

unit. We use the term hinge synonymously with the term attachment spacer. If the 
hinge is too small, nematic order is entirely destroyed. If it is very long, teeth and 
backbone are essentially decoupled. We envisage an intermediate case, corresponding 
to observations [2, 3, 51 of phases where side chain order is sufficiently coupled to the 
backbone to confine at least partially the backbone, either to a plane perpendicular 
to the nematic director or within smectic layers. For N, however the hinge is suf- 
ficiently strong that any nematic tendency of the backbone is insufficient to cause the 
teeth and backbone to be parallel; these competitions are modelled by Wang and 
Warner [l], see also the reviews by Warner [9]. The stereochemistry of where the teeth 
are attached to the backbone is of vital importance for the dielectric analysis that will 
follow. Imagine for simplicity a backbone consisting of C-C linkages in the form 
[-(CX, Y l ) - (CX2 Y2)- * * * -(CX, & ) - I N  where there are n-(CXY)-  units in a mono- 
mer and one of the XI . . . X ,  or Y,  . . . Y, is a tooth. The all-trans configuration of 
this is sketched in figure 2(c) with Y, the tooth (mesogenic side chain). We also 
suppose in this example that the substituents X, and r] are such that this all-trans 
configuration is of lowest energy. Inspection of a simple model shows that, for 
consecutive teeth to be parallel in the all-trans configuration, attachments have to be 
made at  every second (or multiple of two) carbon atom, that is n = 2, 4, . . . with 
stereo-regularity inbetween. To twist two consecutive teeth from an initially parallel 
state to an antiparallel state requires the bonds between successive carbon atoms to 
rotate from 0" upto around 60". Within this extent the rotational potential of these 
bonds increase continuously to its maximum. These angles essentially determine the 
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328 M. Warner and H. Liu 

rotational potential of bonds [lo]. Thus the total rotation potential of two relatively 
twisted teeth, which is determined by the sum of potentials corresponding to these 
bonds connecting them, increases to a maximal value when these teeth are anti- 
parallel. This discussion suggests that, although this process appears to be torsional, 
it is not: since continuing to twist the teeth can only reduce the relative angles between 
bonds, further rotation about the backbone in the same direction until the total angle 
is 2n returns the backbone to the low energy all-trans configuration and a rotation of 
8 = 271 is equivalent to 8 = 0. Two rotations of n have no net effect. On meeting, 
two such states annihilate each other, independently of the sense in which they 
were initially rotated by 13 = f n. We shall loosely describe such processes as tor- 
sional. As a twist between teeth costs an energy made up of distorsions of bonds away 
from the minimum of their rotational energy states, a less sharp twist will cost less 
energy and we shall in general model this by a torsional energy proportional to the 
square of the rate of change of angle of teeth, with 8 varying from 0 to n. The points 
of attachment along the backbone should not be so widely separated that it is easy 
for the backbone to twist, leaving the torsional states of successive teeth essentially 
randomly up or down. Since torsion and bend moduli for a backbone have the same 
stereochemical origin it seems likely, that given bend is sufficiently penalized that a 
chain can be directionally confined by attached teeth (in N, phases), this restriction on 
torsional freedom can also be realized. More complicated is the problem that existing 
synthetic routes produce combs with no clearly defined tacticity. Obviously these 
requirements need molecules produced by highly stereospecific polymerization 
methods, particularly those which produce macromolecules with a high degree of 
isotacticity (ideally 100 percent). In principle the methods developed for stereospecific 
polymerization of acrylates and methacrylates could be used [ 1 I]. Additionally it is 
known that by suitable change of solvent polarity the stereochemistry of polydienes 
prepared by anionic polymerization can be greatly influenced [ 121. Our speculations, 
therefore, relate to molecules yet to be synthesized. For later sections we shall require 
a dipole in each tooth always pointing in the same direction, that is always toward or 
always away from the main chain. This is usually the case in comb polymers with 
on-board tooth dipoles. 

3. Torsional defects 
As the temperature, T, is reduced in the nematic phase, the order S of the teeth, 

defined by 

s = ( ~ ~ ( ~ o s e ) )  ;(cos28) - +, (1) 
approaches 1. Thus, the angle 8 a rod makes with the director n is restricted to values 
close to 0 or n. We consider a nematic mean field felt by the rods of - aSP,(cos 0) 
where a is a coupling constant and is related to the transition temperatures of combs 
[l] .  Small excursions from either pole, 8 or n-8, are equally likely in each azimuthal 
direction, but when considering the transition from one pole to the other this is most 
economically achieved by motion in a plane perpendicular to the local backbone 
tangent, as sketched in figure 3. We use the angle 8 to denote the torsion of the 
backbone in this plane but keep in mind that in general the rods explore orientations 
with two Euler angles. In the presence of bend, torsion of the backbone actually has 
a more complicated definition. 

We now follow the de Gennes’ argument [7] for hairpins and a simplified version 
of the argument for layer hops. At T = 0 the energy associated with a single twist is 
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Torsional defects and comb polymer liquid crystals 329 

Figure 3. A continuous representation of a defect of width b from the competition between 
the nematic field and the torsional force resisting rotation perpendicular to the backbone. 
8 is the angle between tooth and n. 

given by 

u = s', ds { ic [ - aP2(cos6) , I 
where ic is a torsional modulus and s is the distance along a chain. O(s) is the twist 
angle of the chain at s, with the boundary conditions O( - a) = 0 and O(m) = 71. The 
order parameter S normally associated with a has been set equal to 1 a t  this low 
temperature. If we substract the energy associated with the chain at 6' = 0 or 71 and 
render the arc length dimensionless by s = by, with b a length, then we have 

u = zjm 2 -m  dy[ (g r+s in 'O(y ) ] ,  (3) 

if b = J(ici3a). Hence the energy scale can only be ab = J ( i c 4 3 )  and a functional 
minimization of 1 dy { . . . } yields a pure number. The spatial extent of a transition, 
so, is given by b times a dimensionless number yo emerging from the Euler-Lagrange 
minimization. The results, by an analysis, given explicitly in [5] are 

u = 2J(3aic) I 

so = b = J(&). ] 
Now at finite temperatures we simply say that the probability per unit arc length of 
finding a torsional defect is given by the Boltzmann weight exp { - u/(kT)}Z;'. Such 
an analysis can be shown [13] to give the correct exponential behaviour but that the 
inverse length Z;' must come from more detailed statistical mechanics, in this case an 
asymptotic analysis of Mathieu's equation. For layer hops and hairpins such a factor 
could, in principle, be tested by an independent experiment (neutron scattering) and 
has been calculated [5, 81. Here 1, does not seem to be independently measurable and 
we do not present its detailed calculation. 

4. Static dielectric response 
At low temperatures the arc length separating defects is lo exp { u / ( k T ) }  (the inverse 

frequency of defect creation given in 4 3) and becomes large. This means that if a field 
E is applied along the director it couples strongly to a defect since it represents a large 
section of chain with its dipoles pointing along or against the field. Low temperatures 
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330 M. Warner and H. Liu 

Figure 4. The coordinate system for defects of zero width. E is the applied field and sI, 
s2, . . . , are the positions of defects. Tooth dipoles are denoted by arrows pointing away 
from the main chain. 

also imply that the characteristic region of transition in a defect so, is much less than 
the distance between them, Zoexp { u / k T ) } ,  and hence that defects mostly have a clearly 
defined identity of their own. This, in turn, suggests using the position of the defects 
as a coordinate to describe the dielectric response (see figure 4). This was the method 
of [8] to find the response of the hairpin gas in main chain nematics. If the dipole 
moment of a monomer, that is of a tooth, is p and the space between teeth along the 
backbone is q then the dipole moment per unit length of main chain is G = p / q .  The 
energy of the polymer in an electric field E directed along n is 

( 5 )  

where, as seen in figure 4, the field acts parallel to the dipoles in the interval (0, sI), 
anti-parallel to those in (sI, s2)  and so on. The defect positions are given by 
sI , . . . , s,. The final sign k in V,  is + or - according to whether the number of 
defects n is even or odd. L is the total length of the chain. A sequence starting the other 
way, that is anti-parallel in (0, s,) etc. can be obtained by changing the sign of E.  
Associated with these n defects is a Boltzmann factor exp(-npu - B V , )  with 
f l  = l/(kT). An entropy is associated with where the defects are put in along the 
chain; we must sum over positions 0 < sI < s2 < . . ’ < s, < L. If we turn these 
sums into integrals J ds, . . . then the correct measure is given by the 1;’ factor 
introduced when discussing the defect frequency. It is convenient to introduce a 
dimensionless length x = silo and a dimensionless measure of the electrical energy of 
a dipole of magnitude lot; we call this v = /,,OPE. Denoting the Boltzmann factor 
exp(-flu) by f ,  the partition funtion for a defect comb polymer is then 

V ,  = -[s, - (s2 - Sl)  + (s3 - s2) + . * * (k) (L  - s,)]aE, 

Z = 1 1 f” J ’‘ dx, . . . (6) 

where N = Lila is the number of sections of length I,, in the chain. Laplace trans- 
formation of the integrals in the nth term of the series turns this Laplace convolution 
into a product. Z then becomes a geometrical series which can easily be summed and 
then back-transformed; the result is 

dx, exp [vx, - v(x2 - x l )  + . . . v(N - x,)] ,  
n + E  0 Jo 

(7) 

with A’ = v2 + f *. In the dielectric analysis of hairpins [8] the limit of many defects 
per chain was taken, that is ,fN % 1. That was only for simplicity and we now 
illustrate the general case here. 
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Torsional defects and comb polymer liquid crystals 33 1 

The net dipole moment of a chain is 

which is, of course, the quantity entering the potential (5) and the electrical part of 
the Boltzmann factor in (6). Since Z is a statistical weight, the mean dipole moment 
per chain is given by 

k T  aZ a aF 
(p) = ~ ( z )  = k T z l n Z  = - - BE (9) 

as can be verified by taking the differential of equation (6). F is the free energy 
of a chain, F = - kTlnZ.  The susceptibility x is ( l / E g )  (BP/aE)E-n where P is the 
polarization P = (p)/(Nv) with Nv being the volume of a chain. The volume 
associated with a length 1, of chain is v. Recalling that v = 1,oPE and hence 
a/aE = lnopa/Bv, we obtain x = (-a2 F/aE2)/(Nv&,) from equation (7) as 

1 1 x = @??! [Nsinh(jN) - - sinh(fN) + Ncosh(fN) 
NVenf f 
x [cosh(fN) + sinh(j7V)I-l. (10) 

In the limit of very few defects per chain on average, fN 6 1 we find [ .  . . ]  - N2f 
and 

where xo = ~ ' / ( U ~ ~ T E ~ )  is the susceptibility characteristic of a conventional nematic 
composed of molecules with the volume a3 and the dipole p of the monomers. 
Np = Nln/q is the degree of polymerization (the number of teeth per chain). We use 
here the relation v = a3(10/q) where ln/q is the number of teeth in a length In .  Hence 
an intensive quantity such as x is seen to become large, eventually becoming pro- 
portional to the degree of polymerization N,, as the teeth act in concert. Rigid combs, 
probably in this limit and in a new biaxial mesomorphic phase, have been constructed 
by Ballauff and Schmidt [ 141 but without reference to possible dielectric anomalies. 

The other limit of Gunn and Warner [8] offN p 1 can be taken from equation 
(10) or by returning to equation (7) where since A > S, then AN 9 1 also; then we 
have 

Z = 2 1 + - exp(AN). ( 2) 
Directly differentiating and taking the E -+ 0 limit we find 

where n E fN is the number of defects along one chain. Again there is a large 
response which is Np/n times greater than that of conventional nematics since we 
suppose, in the beginning of this section, that the average distance between two 
successive defects is much greater than the space between teeth, i.e. Inexp (u/kT) $ q. 
Comparing these susceptibilities of two different limits given by equations (1 I )  and 
(13) with each other, we find the x of the latter case is only one nth of the correspond- 
ing value in former. The ratio of these two values l/n, shows that the external field 
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332 M. Warner and H. Liu 

couples to the defects so strongly that the dielectric response in the many defect limit 
is equivalent to that of molecules with a degree of polymerization equal to N,/n. 
Equation (13) shows the tendency of increasing x, as the frequency n of defects 
decreases, toward the limiting (1 1 )  value xoNp where all defects are frozen out. The 
number Nlo/q = Np is the total number of teeth on the chain. Recall that 1, was an 
elementary length, not obtainable from our simple Euler-Lagrange argument. In the 
hairpin case recourse could be made to the full statistical mechanical asymptotic 
solution of the hairpin problem [13] and lo found. It was linear in T thus eliminating 
all of the temperaturf: dependence in expressions like ( 1  3) except in the exponent. We 
leave the question of lo here, remarking simply that x in equation (13) has a form 
characteristic of defect activation and is capable of being very large. 

In the transition from 2 to x we neglect O(E2), that is, we looked for the linear 
response. Examination of the terms thereby discarded shows that they are small 
provided that v < f. Hence fields are small if they satisfy E < kTexp (- Bu)/oZo or 
pEZo exp (u/kT)/q < k T  where lo exp (u/kT)/q is the total number of teeth between two 
successive defects. So this inequality shows that the maximal energy of teeth between 
two consecutive defects in an external field E is less than the thermal energy kT. It is 
consistent with the discussion in the end of this section implying that the electric field 
is not strong enough to change the average number of defects, only to bias the 
distribution of teeth up or down toward its mirror images. The response becomes 
non-linear if the field exceeds this exponentially small value. 

For the later interpretation of the dynamical response it is useful to examine x 
further. Returning to equation (13) we can work back to the polarization per chain 
by multiplying by NvEc0. The result is 

(14) 
( p )  = a2loLBexp(Du)E z ---BE P2N; 

n 

which depends on a factor equal to the mean square number of teeth pointing in a 
particular direction times the square of the dipole moment on a tooth, that is 
p2[1,L exp (Pu)/q2]. The last factor is the equivalent of the mean square spatial extent 
of a chain in the hairpin case. We can now deduce that a small field, in creating a bulk 
polarization, does not alter drastically the distribution of lengths of teeth up and 
down but simply biases it, selecting conformations from their mirror images, a 
distinction that is imperceptible when considering the number of defects in the defect 
gas. Changes in the distances between defects are introduced at O(E2), a result that 

Figure 5 .  Configuration or defects (a), (b) ,  ( c ) ,  and their mirror images ( f ) ,  (P ) ,  ( d ) .  The 
population of configurations relative to their images is biased by an applied field, rather 
than the field changing their shapes. 
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Torsional defects and comb polymer liquid crystals 333 

can be calculated directly or by noting in equation (14) that the mean square net tooth 
number (loL/q2) exp (f lu) that enters. If this were to be altered at O(E) another vector 
would have to be found with which to create a scalar from E. There is no such vector 
available in the problem, hence the requirement that shape changes enter at O ( E 2 ) .  
Figure 5 illustrates configurations and their mirror images, equal in pairs in energy as 
far as defects are concerned but different in their electrical energies and thereby biased 
in number by the field. 

5. Dynamics of comb polymers 
We shall discuss one limited form of the motion of comb nematics, namely the 

dynamics of the teeth at low temperatures where the nematic order is strong. The 
flipping of teeth is not expected to have a strong influence on the spatial motion of 
the chain, but it will be the relaxation relevant to describe the time dependent aspects 
of the unusual dielectric response developed in the previous section. 

First we give some qualitative arguments for the dynamics by considering the 
diffusional motion of the torsional defects since it is their motion which leaves a trail 
of flipped dipoles behind. We have suggested previously that at low temperatures they 
form a natural set of coordinates for the thermodynamics. It seems they are also 
natural for the dynamics. We shall then consider how this problem can be made 
similar to that of the dynamics of a one dimensional Ising chain, a problem solved 
exactly by Glauber [ 151. The results will agree exactly with our qualitative analysis for 
low temperatures. 

At low temperatures all teeth are essentially up or down, such regions of one 
polarity being connected with one of the other polarity by defects, the width of which 
is given by equation (4). At low enough temperatures (high nematic order) there are 
few defects and their width, which is independent of temperature, is small compared 
with their separation which behaves like exp (u/kT) thus allowing defects to be 
considered as separate entities. For a defect to progress an elementary process such 
as a tooth flip must occur, see figure 6(a) .  If this process occurs at a rate a, then in 
a time t there will be at steps. Since steps are equally likely in both directions we have 

I 

I I If1 I: I I I I 
(b)  

I I  
Figure 6. (a)  A defect advancing one step by an elementary flip (time l / a )  (the difference 

between step lengths I, and lo, q or b can be later absorbed into a). (b) The meeting of 
two defects annihilates the section of the given polarity between them. (c) Generation of 
a defect pair creates an island of down in a sea of up. 
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334 M. Warner and H. Liu 

a random walk for the defect. The mean square distance traversed along the backbone 
is, with I the step length separating effective teeth, 

( s 2 )  = 1 2 M t  E Dt, (15) 

whereupon the effective diffusion constant, D,  is D = ~ 1 ' .  
The problem is how the chains evolve to a state where configurations are biased 

by the applied field toward their energetically more favourable mirror images. When 
there are few defects per chain a dynamical question arises. In going from say (a)  to 
(J') in figure 5, is the rate determined by the diffusion of existing defects from one end 
of the chain to the other, or is it determined by the rate at  which defects are thermally 
generated at one end of (a)? The time for diffusion, zd is given simply by the brownian 
law L2 = Dzdr hence 

(identifying 1 with 1, for simplicity of the algebra). 
The thermal activation of defects at the end is t , h  - M - '  exp(u/kT) since the 

attempt frequency CY is roughly that involved in the flipping of bonds required to twist 
teeth, and an activation is required to create a defect of energy u. If thermal generation 
is the rate determining step, z,h > zd,  we have exp(u/kT) > N 2  and the relaxation 
time is t, 

z'  = z,,, x M - '  exp(Bu). (17) 
For longer chains, or not such low temperatures, but still few defects per chain, i.e. 
Nexp(-u/kT) 6 1 but N2exp(-u/kT) S 1, then z,,, 6 z d  and we have a second 
regime 

t2 = zd x M - ' N ~ .  (18) 

We can now ask, inspecting the sequence of configurations and their mirror images 
in figure 5, how long equilibration to (or from) a biased state takes when a field is 
switched on (or off). A nai've analysis might suggest that relaxation is quick since one 
defect only has to move a short distance to make it down the cascade to the next 
configuration in the sequence. The actual time is again z - M-'N' since if a defect 
has a position s along the chain, its energy is V = -(2s - L )  aE (see equation 
(5)) and hence the probability distribution function for defect position s is Po(s) - 
exp (2soElkT). After the field is switched off, the initial distribution Po(s) diffuses to 
the constant value P - & / L  according to the diffusion equation 

(g - D $) P(s ,  t )  = 0. 

The eigen solutions of this are -cos(nxs/L)exp(-I,t) with 2, = D ( ~ Z / L ) ~ .  The 
n = 1 component gives an eventual exponential decay of any initial distribution with 
a characteristic time 

r 2  

The many defect relaxation, that is when Nexp(-u/kT) 9 1, can be estimated 
by recalling that when E is small it does not change the number of defects, but simply 
biases the distribution between up and down sequences. Thus, the sequence in figure 5 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1
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can be thought of as not being for a whole chain, but merely being the dispositions, 
within a long chain, of a section of chain equal in length to the mean separation 
between defects. Therefore, in the equilibration time (20) associated with figure 5 we 
should put, instead of L, the distance lo exp (u/kT) between defects. This yields the 
third characteristic time, for many defects per chain, Nexp (- u/kT) % 1, of 

zj = a-lexp(2Pu). (21) 
The foregoing dynamical model can be pressed into the dynamics of a one 

dimensional Ising chain by reconsidering the chains; defects have a characteristic 
width b over which the direction of teeth is reversed. If we consider teeth blocked into 
groups of b/q then, on this scale, defects will appear to be sharp divisions between 
regions of effective teeth up and down. Of course, to preserve the static susceptibility 
and the overall characteristic dynamic scale, p and (x will also have to be scaled. Since 
we are only interested in the forms of the response we absorb those factors and 
continue to use p and a. Since the chain is infinite we are clearly in the many defects 
per chain limit. Contact can now be made with the Ising model. The energy of two 
neighbouring spins (teeth) i, i + 1 is --.ICS~CS,+~ where ci = I or - 1 if teeth are up or 
down and 5 > 0 implies a ferromagnetic ordering. We have, for our blocked teeth 
25 = u. Glauber has solved the dynamics of this problem exactly [15], taking a 
probability a/2 per unit time of flipping i if i - 1 and i + 1 are oppositely directed 
to each other. The probabilities of flipping i in the other two cases of i - 1 and i + 1 
parallel to each other and either parallel or anti-parallel to i are related to a12 by 
detailed balance. Thus 4 2  describes defect motion, the other two processes being 
spontaneous generation of defects and their pair-wise annihilation, respectively. In 
general all three processes occur. 

In our diffusion model we took (x (not 4 2 )  to be the probability per unit time of 
our defect taking a step in the diffusion process. In Glauber's model the situation is 
complicated by many defects for finite temperatures. However, at low temperatures, 
it can be simplified by considering the directions to be equal, i.e. 4 2 ,  as there is no 
other defect in the vicinity of the defect considered. Thus when the defect number is 
low we have a rough correspondence with Glauber if we take the defect motion 
probability per unit time to be a. We do not repeat Glauber's elegant analysis here but 
simply quote his result for the decay of bias of up with respect to down set up by a 
static field E,, applied until t = 0 and then switched off. His result for the mean of cri 
for any tooth i is 

where 

y = tanh(2J/kT) and y = tanh(J/kT). 

Gathering together terms we obtain 

PEo 
k T  

(a(t)) = -exp(2JkT)exp 

with 

- 1 + exp(4JIkT) 
- - 1 

z =  
a[l - tanh(2J/kT)] 2a 
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If we take the limit of low T and put 2 J  = u we obtain from equation (23) the mean 
dipole moment per chain 

where No is the number of blocked groups of teeth along the chain and z is derived 
from equation (24) 

(25 b)  
1 

2cr 
z = -exp(2pu). 

The first part of equation (23) is the static response leading to the large values of x 
given by equation ( 1  3). The low temperature limit of z given by equation (25 h) yields 
our result obtained for simple defect diffusion, equation (21). The complicated form 
of equation (24) for z away from low temperatures reflects the increase of other 
processes involved in relaxation, namely the modification of the hopping rate 4 2  from 
the presence of other nearby defects and the possibility of defect generation, figure 
6(c). For our problem, when this becomes important we probably no longer have a 
very high underlying nematic order and the dominance of the teeth is lost, thereby 
invalidating the whole model. We accordingly do not pursue equation (24). 

Knowing the relaxation time of a spin (tooth) and the mean square net tooth 
number allows us to immediately write down the time dependent correlation function 
for the polarization 

with z given by equation (24). By using equation (26) and fluctuation-dissipation 
theorem [15] we have the frequency dependent response ~ ( o )  for the case of a 
harmonic field E( t )  = Eoexp (- iwt) 

The real part of ~ ( w )  yields a lorentzian form x(O)/[l + (wt)']. When o -, 0, the limit 
of ~ ( 0 )  is that given in $4. 

6. Applicability to experiment 
We recall that for simple, rod-like nematics there are many dielectric processes 

possible, the three principal ones being sketched in figure 7. The first two, rotation 
about the long axis reorientating an outboard dipole (a)  and rotation of the rod 
through the cone of allowed nematic orientations reorientating an onboard dipole (h), 
are both rapid. The third possibility (c), reversing the rod direction, is slow but 
obviously contributes most to the decay of polarization built up by a field applied 
parallel to the direction. It is slow [16, 171 because the rod has to pass through 
orientations 0 - 7112 highly forbidden by a strong nematic field. This energy is, in 
fact, one component of the energy required to create a defect and gives a time scale 
zf - to exp ( a S / k T )  where zo is some underlying time scale, characteristic of the first 
two processes. We are also proposing a drastic extension of one time scale, that is 
z = exp(2pu)/2c(, associated with a particular dielectric response. In our case the 
response can be - N times larger than the third possibility ( c )  for simple nematics. The 
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Figure 7. Dielectric processes in simple nematics. (a) rotation about the long axis reorienting 
an outboard dipole; (b) rotation through the cone of allowed nematic orientations 
reorientating an onboard dipole; (c) reversing the rod direction. 

difference is that our timescale becomes extended because of the cooperative action 
of the dipoles and the long time required for the defects to arrange this. Because our 
z is bounded only by N,’ it seems possible that z could exceed zr considerably. 

What we are not commenting on in this paper is the polymeric equivalent of the 
first two processes in simple nematics, that is local motions in the chain backbone 
leading to partial reorientation of dipoles and relatively small responses, all on a 
relatively fast time scale. 

7. Non-linear optical effects 
Organic molceules with a donor and acceptor widely separated by a conjugated 

electron system are very effective, fast and low-loss non-linear optical elements. Their 
geometry is often cylindrical which makes them nematic or smectic, or at least able 
to couple strongly to a nematic solvent. 

Nematics present a very efficient environment in which to apply a poling field to 
remove the macroscopic centre of symmetry, a necessary step for achieving a non- 
linear optical effect [18, 19,201. Polymer liquid crystals have been recognized as offering 
still greater advantages: they can form films and coatings of good mechanical strength 
and they typically have glassy phases which freeze in the effect of poling. Additionally, 
sometimes the small solubility of non-linear optical molecules in nematic solvents can 
be overcome by using nematic comb polymers not as solvents but making the 
non-linear optical elements themselves the teeth of the comb [ 181. 

We shall point out how the foregoing conclusions about dielectric response could 
be used to predict an equally large non-linear optical effect and a similar kind of 
dynamical response. Firstly we sketch this response in simple nematics. We then 
calculate the response for comb polymers and conclude by discussing a non-linear 
optical experiment that has seen an anomalously large effect. Assuming, for simplicity, 
that responses are along the longest principal molecular ( z )  axis, we have, in the 
molecular frame (primed), 

pi = E O [ ~ E ~  + PZ(Ei)* + . * . 1, (28) 
where pi is the dipole induced by the applied field Ei. c1 and /I2 are the molecular linear 
and first non-linear polarizabilities respectively. If the field E is applied in the laborat- 
ory z direction, then Ei = Ecos8 when the molecular axis is at an angle 8. The 
laboratory z component of induced dipole is pz  = pi cos 8 whereupon 

pz  = E ~ ~ ~ ~ c o s ~ O E ~ ,  (29) 
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where we neglect the linear induced dipole (u) since dipolar effects are stronger with 
the permanent dipoles in the analysis of 54. Since the macroscopic polarization, P, is 
the dipole moment per unit volume, we obtain on division by the molecular volume, 
V, and averaging over angles t? 

whence the second dielectric constant xi2) for non-polymeric nematics is defined and 
is given by 

xi’’ = (cos38) = ~1,2b,(cos~t?), 
V 

where xCb, is the intrinsic or ideal value obtaining in a sample with perfect dipolar 
order. In the nematic phase since there is no end-for-end (dipolar) ordering, that is the 
state of 8 is equivalent to that of n-8, then (c0s3 8) = 0. The centre of symmetry in 
a nematic fluid of such elements is destroyed by applying a poling field, E,. In a 
simple, strongly ordered nematic 8 - 0 or 8 - n, i.e. molecules can basically be only 
up or down. It is then easy to show that 

(32)  (cost?) x (cos3e) x -, PEP 
k T  

with the corresponding results for the isotropic state being 

PEP (cost?) = - 
3 k T  

and 

( ~ 0 ~ ~ 8 )  = - PEP 
5 k T ‘  

(33 a) 

(33 6) 

The rod dipole moment is p .  The result ( 3 2 )  for (cos8) gives the conventional 
nematic susceptibility xo discussed after equation (1 1) .  Just as the dielectric response 
is enhanced by the factor of three from the nematic ordering, so is the non-linear optical 
response x‘’) enhanced by a factor of five (in going from equation (33 b) to equation 
(32) ) .  This is the Ising picture of Williams et al. [19], see van der Vorst and Picken [20]. 

Hence equation ( 3  1) gives us the non-linear dielectric susceptibility for con- 
ventional nematics as 

The analysis of 54 of the large dielectric response was really a calculation of 
(cos 8) when torsional effects induce correlations between teeth. Since in the strong 
nematic limit cos 8 x c0s3t? z k 1 ,  the calculation of (c0s38) proceeds in a similar 
way and we can take over the results. As we suppose a simple case where the nematic 
is strongly ordered, i.e. t? - 0 or 8 N n, the average of cos 0 or c0s3 8 will be given 
by (a(0)) in equation (23)  
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So the second order susceptibility yields 

which is exponentially large and is Np/n times greater than the value for a simple 
nematic given by equation (34). The enhancement of xl’) beyond the value xi2) is due, 
as in the dielectric case, to monomers induced to act cooperatively by the nematic field 
combined with constraints on relative twist. x(’) grows exponentially mirroring the 
growth in distance between twist defects, the second part of equation (35) being so 
written as N,/n to emphasize it is the stretches of chain between defects that act 
together. The ultimate limit of equation (35) is actually x(’) = Npxi2), the same limit 
as equation (1 1)  for the dielectric case. 

In some respects non-linear optical effects are easier to observe than dielectric 
effects; there the conduction current obscures the measurement, via polarization 
current, of the build up of polarization and thus the measurement of x. In the 
case of worm polymers it was proposed [8] that the hairpins defects of ordering 
could be a source of large dielectric response: hairpins represent an abrupt reversal 
in direction of the worm axis with respect to the nematic field. If each monomer 
has a dipole pointing in the same sense along the chain backbone then hair- 
pins represent changes in dipole direction, just as twist defects do in the present 
case. The limit where the chain is stretched with few defects then the limit x - 
Npxo was proposed. The same remark, x(’) N Npxh2) also follows for suitable 
main chain polymer liquid crystals from the same argument. Unknown to Gunn 
and Warner the effect of monomers acting cooperatively had long since been 
observed by Levine and Bethea [2l]. They noticed a huge value of in the 
molecule PBLG which has dipoles and non-linear optic elements pointing in the same 
direction in each monomer. PBLG is most inflexible and represents an extreme limit 
of no hairpins. 

The example of PBLG has been quoted as an illustration of what is possible 
when elements of a chain are induced to act cooperatively. In this case it is intrin- 
sic stiffness rather a nematic field and defects that are responsible. It should be 
noted that the experiment of Levine and Bethea was performed in solution. At 
higher concentrations the dynamics of response of rigid rods to a poling field 
is expected [22] to be very slow. Very stiff rods might also be expected to present 
fewer steric impediments to the anti-ferroelectric ordering expected ultimately in 
concentrated solution or melts. Antiferroelectric correlation are more difficult to 
sustain in semi-flexible main chain and comb systems because chains in contact at one 
point are unlikely to be so at other points. 

In contrast to the slow dynamics of rods we expect in combs the dynamics 
of the build up of the non-linear optic effect x(’) in response to the poling field 
Ep to be the same as the dynamics of the dielectric response. This is again, in 
terms of the model, because c3 = u for spin values of (r = k 1. Thus we antici- 
pate three regimes for the characteristic time, z, of relaxation. For main chain 
nematics other mechanisms for dynamical response, faster than that for rigid 
rods, can be envisaged. They do not involve the motion of the whole molecule 
at one time, as is required for rigid rods, but involves diffusion of conformational 
defects. In any case side chain or main chain polymer liquid crystals are expected 
to avoid the difficulties associated with extending the PBLG work to very high 
concentrations. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



340 M. Warner and H. Liu 

8. Conclusions 
We have proposed that a particular molecular geometry in comb polymer liquid 

crystals coupled to strong nematic order can provide a mechanism by which we can 
have strong dipolar (dielectric) effects in a quadrupolar medium. This is the analogue 
of the hairpin mechanism proposed for main chain polymers. A defect mediated 
response leads to static dielectric susceptibilities of an activated form which become 
very large, eventually scaling like the molecular weight. A large non-linear optic effect 
is also discussed. The dynamical response is calculated and turns out to be ultimately 
very slow, scaling like the square of the molecular weight when defect diffusion over 
the length of the chain is the dominant process. It is hoped that the chemical structures 
necessary for this unusual behaviour can be soon synthesised. 

Dr. J. Deutsch also independently conceived of twist defects and helped clarify 
ideas of torsion. M. W. thanks Professor H. Finkelmann and Dr. R. W. Richards 
for illuminating discussions about the synthetic chemistry of comb polymers and 
Dr. M. E. Cates for help in visualizing the stereochemistry involved in creating twist. 
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